

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

PRODUCT SPECIFICATION

規格書

CUSTOMER :

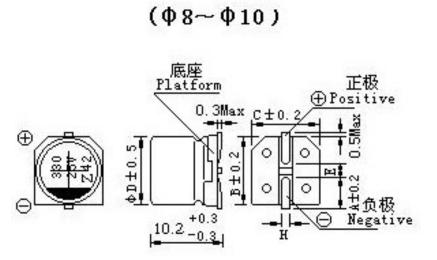
(客戶):

Г

DATE :

(日期):2018-05-19

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: VTD 25V330 μF (φ 8x10.2)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:


SUPPL	IER	CUST	FOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
杜焕	付婷婷		

ELECTROLYTIC CAPACITOR SPECIFICATION VTD SERIES

	SPECIFICATION VTD SERIES					ALTERN	ATION H RECORDS	ISTORY
Rev.	Date	Mark		ıge	Contents	Purpose	Drafter	
				0				
	Version		01				Page	1

MAN YUE ELECTRONICS	ELECTROLYTIC CAPACITOR	SAMXON
COMPANY LIMITED	SPECIFICATION VTD SERIES	

Table 1 Product Dimensions and Characteristics

Unit: mm

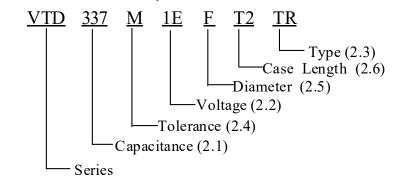
Size	8x10.2
A±0.2	2.9
B±0.2	8.3
C±0.2	8.3
D±0.2	8.0
Е	3.1
L±0.2	10.2
Н	0.8~1.1

No.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(℃)	tanδ (120Hz, 20℃)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 120Hz (mA rms)	Load lifetime (Hrs)	Dimension (mm) D×L
1	VTD337M1EFT2TR**	25	330	-20%~+20%	-55~105	0.14	83	220	2000	8x10.2
										<u> </u>

Γ	Version	01	Page	2

C O N T E N T S	
	Sheet
1. Application	4
2. Part Number System	4
3. Construction	5
4. Characteristics	5~10
4.1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 $\tan \delta$	
4.5 Temperature characteristic	
4.6 Load life test	
4.7 Shelf life test	
4.8 Surge test	
4.9 Vibration	
4.10 Solderability test	
4.11 Resistance to solder heat	
4.12 Damp heat test4.13 Adhesion test	
4.14 Reflow soldering temperature profile	
4.15 Maximum permissible (ripple current)	
5. Taping	11
6. Packing style	12

	Version	01		Page	3	
--	---------	----	--	------	---	--


ELECTROLYTIC CAPACITOR SPECIFICATION VTD SERIES

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

2. Part Number System

2.1 <u>Capacitance code</u> Code 337 Capacitance (µF) 330

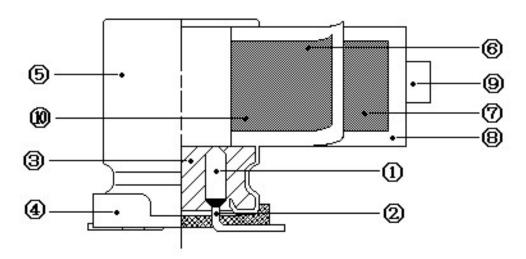
- 2.2 Rated voltage code Code 1E Voltage (W.V.) 25
- 2.3 <u>Type</u>

Code	TR
Reference	Embossed Taping.

- 2.4 <u>Capacitance tolerance</u> "M" stands for $-20\% \sim +20\%$
- 2.5 <u>Diameter</u>

Code	F
Diameter	8

 $\begin{array}{c} 2.6 \qquad \underline{\text{Case length}} \\ \text{T2=10.2mm} \end{array}$


Version	01		Page	4
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION VTD SERIES

SAMXON

3.Constructions

3-1 Inside Construction

3-2 Construction parts

No.	Parts	Materials	No.	Parts	Materials
1	Lead line	Aluminum 99.93%	6	Anode foil	Formed aluminum 99.99%
2	Terminal	Tinned copper-ply wire (Lead Free) (*2)	7	Cathode foil	Etched aluminum 98%
3	Sealing pad	I.I.R.	8	Separator	Pulp
4	Base plate	P.P.A	9	Adhesive tape	Poly propylene film
5	Case	Aluminum 98%+ PET coating	10	Electrolyte	GBL & EG

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01	Page	5

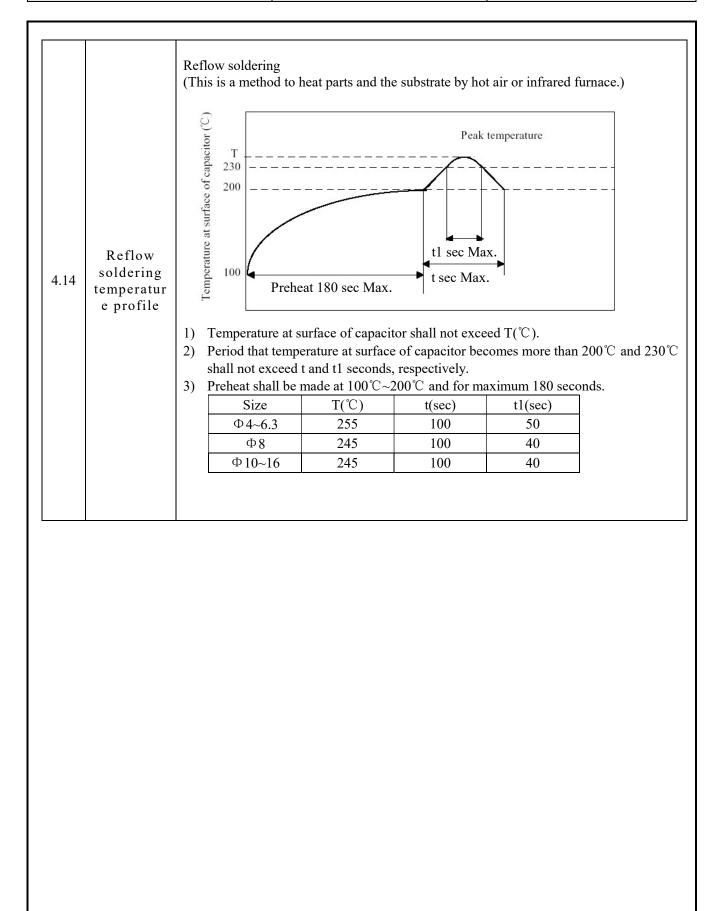
ELECTROLYTIC CAPACITOR SPECIFICATION VTD SERIES

Tabl	ITEM				PEREO	RMAN	F			
	Rated voltage (WV)				PERFU	KWANG				
4.1		WV (V.DC)	6.3	10	16	25	35	50	63	
	Surge voltage (SV)	SV (V.DC)	7.3	11.5	18.4	29	40	58	73	
4.2	Nominal capacitance (Tolerance)	<condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria></condition>	requenc oltage emperat	: N ure : 20	20 Hz \pm 12 fot more t 0 ± 2 °C apacitanc	han 0.5V				
4.3	Leakage	<condition> Connecting t minutes, and</condition>	the capa then, me		-		sistor (1	$k \Omega \pm 10$)Ω) in s	series for
_	current	<criteria> Refer to Tabl</criteria>								
	tan δ		e 1 m Capac	itance, fo	or measur	ing freq	lency, vc	oltage an	d temper	ature.
		Refer to Tabl Condition> See 4.2, Nor Criteria>	e 1 m Capac	itance, fo	or measur	ing freq	lency, vc	oltage an	d temper	ature.
4.4		Refer to Tabl <condition> See 4.2, Nor <criteria> Refer to Tabl</criteria></condition>	e 1 m Capac e 1		or measur			oltage an	d temper	ature.
		Refer to Tabl <condition> See 4.2, Nor <criteria> Refer to Tabl ondition></criteria></condition>	e 1 m Capac e 1		erature(°C	2) Tim	e		d temper	
		Refer to Tabl <condition> See 4.2, Nor <criteria> Refer to Tabl Condition> STEP</criteria></condition>	e 1 m Capac e 1	ng Tempo	erature(°C 2	2) Tim Tim	e e to reac	h therma		rium
		Refer to Tabl Condition> See 4.2, Nor Criteria> Refer to Tabl Condition> STEP 1	e 1 m Capac e 1	ng Tempo 20±	erature(°C 2 5)±3	2) Tim Tim Tim	e e to reac e to reac	h therma	l equilib	rium
		Refer to Tabl Condition> See 4.2, Nor Criteria> Refer to Tabl Condition> STEP 1 2	e 1 m Capac e 1	ng Tempo 20± (-40) (-2	erature(°C 2 5)±3 2	2) Tim Tim Tim Tim	e e to reac e to reac e to reac	h therma h therma h therma	ıl equilib ıl equilib	rium rium rium
	tan δ	Refer to Tabl Condition> See 4.2, Nor Criteria> Refer to Tabl Condition> STEP 1 2 3	e 1 m Capac e 1	ng Tempo 20± (-40) (-2 20±	erature(°C 2 5)±3 2 2	C) Tim Tim Tim Tim Tim	e e to reac e to reac e to reac e to reac	h therma h therma h therma h therma	ıl equilib ıl equilib ıl equilib	rium rium rium
4.4		Refer to Tabl Condition> See 4.2, Nor Criteria> Refer to Tabl Condition> STEP 1 2 3 4 5	e 1 m Capac e 1 Testin	ng Tempo 20± (-40) (-2 20± 105± 20±	erature(°C 2 5)±3 2 2	2) Tim Tim Tim Tim Tim Tim	e e to reac e to reac e to reac e to reac e to reac	h therma h therma h therma h therma h therma	Il equilib Il equilib Il equilib Il equilib Il equilib Il equilib	rium rium rium
	tan δ	Refer to Tabl Condition> See 4.2, Nor Criteria> Refer to Tabl Condition> STEP 1 2 3 4 5 Capacita	e 1 m Capac e 1 Testin nce, DF,	ng Tempo 20± (-40) (-2 20± 105± 20±	erature(°C 2 5)±3 2 2 2 2 2	2) Tim Tim Tim Tim Tim Tim	e e to reac e to reac e to reac e to reac e to reac	h therma h therma h therma h therma h therma	Il equilib Il equilib Il equilib Il equilib Il equilib Il equilib	rium rium rium
4.4	tan δ Temperature characteristi	Refer to Tabl Condition> See 4.2, Nor Criteria> Refer to Tabl Condition> STEP 1 2 3 4 5	e 1 m Capac e 1 Testin nce, DF,	$\begin{array}{r} \text{ng Tempo}\\ 20\pm\\ \hline\\ (-40) (-2\\ 20\pm\\ 105\pm\\ 20\pm\\ \text{and imp} \end{array}$	erature(°C 2 5) ± 3 2 2 2 edance sh	2) Tim Tim Tim Tim Tim Tim nall be m	e e to reac e to reac e to reac e to reac e to reac easured a	h therma h therma h therma h therma h therma at 120Hz	Il equilib Il equilib Il equilib Il equilib Il equilib Il equilib z.	rium rium rium rium
4.4	tan δ Temperature characteristi	Refer to Tabl Condition> See 4.2, Nor Criteria> Refer to Tabl Indition> STEP 1 2 3 4 5 Capacita a. At +105	e 1 m Capac e 1 Testin nce, DF,	$\frac{\text{ng Tempo}}{20\pm}$ $(-40) (-2)$ $20\pm$ $105\pm$ $20\pm$ and imp	erature(°C 2 5) ± 3 2 2 2 edance sh	2) Tim Tim Tim Tim Tim all be m	e e to reac e to reac e to reac e to reac e to reac easured a 5% of th	h therma h therma h therma h therma h therma at 120Hz	Il equilib Il equilib Il equilib Il equilib Il equilib Z.	rium rium rium rium
4.4	tan δ Temperature characteristi	Refer to Tabl Condition> See 4.2, Nor Criteria> Refer to Tabl Condition> STEP 1 2 3 4 5 Capacita a. At +105 measure The lear	e 1 m Capac e 1 Testin nce, DF, a> °C, capa kage cur	$\frac{19 \text{ Tempo}}{20\pm}$ $\frac{20\pm}{(-40)(-2)}$ $\frac{20\pm}{20\pm}$ and imperformed integration of the second	$\frac{\text{erature}(^{\circ}C}{2}$ $5)\pm 3$ 2 2 2 edance shall be with	2) Tim Tim Tim Tim Tim all be m thin ±2 factor sh	e e to reac e to reac e to reac e to reac e to reac easured a 5% of th hall be wi	h therma h therma h therma h therma at 120Hz eir origin	I equilib I equilib I equilib I equilib I equilib I equilib z. n at $+20^{\circ}$ it of 4.4.	rium rium rium rium
4.4	tan δ Temperature characteristi	Refer to Tabl Condition> See 4.2, Nor Criteria> Refer to Tabl Condition> Condition> Condition> Condition> Condition Conditio	e 1 m Capac e 1 Testin nce, DF, nce, DF, c, capa ed capac kage cur cified va	$\frac{\text{ng Tempo}}{20\pm}$ $\frac{20\pm}{(-40)(-2)}$ $\frac{20\pm}{20\pm}$ and imp citance sl itance, di rent valu ilue.	erature(°C 2 5) ± 3 2 2 2 edance sh hall be wi ssipation e at +105	Tim Tim Tim Tim Tim Tim Tim thin ±2 factor sh °C shall	e e to reac e to reac e to reac e to reac e to reac easured a 5% of th hall be winnot mor	h therma h therma h therma h therma at 120Hz eir origin thin limi e than 1	I equilib I equilib I equilib I equilib I equilib I equilib z. n at +20% it of 4.4. 0 times	rium rium rium rium
4.4	tan δ Temperature characteristi	Refer to Tabl <condition> See 4.2, Nor <criteria> Refer to Tabl ondition> STEP 1 2 3 4 5 Capacita a. At +105 measure The lea the Spe b. At step</criteria></condition>	e 1 m Capac e 1 Testin nce, DF, °C, capa ed capac kage cur cified va 5.capaci	$\frac{\text{ng Tempo}}{20\pm}$ $(-40) (-2)$ $20\pm$ $105\pm$ $20\pm$ and imp citance slatence, di rent valu ulue. tance sha	erature(°C 2 5) ± 3 2 2 2 edance sh hall be wi ssipation e at +105 all be with	$\begin{array}{c c} \hline & Tim \\ \hline & nall be m \\ \hline \\ thin \pm 2 \\ factor sh \\ ^{\circ}C shall \\ hin \pm 10 \\ \end{array}$	e e to reac e to reac e to reac e to reac e to reac easured a 5% of th nall be wi not mor	h therma h therma h therma h therma h therma at 120Hz eir origin ithin limi e than 1 r origina	I equilib I equilib I equilib I equilib I equilib I equilib I equilib Z. n at $+20^{\circ}$ it of 4.4. 0 times I $+20^{\circ}$ C	rium rium rium rium
4.4	tan δ Temperature characteristi	Refer to Tabl Condition> See 4.2, Nor Criteria> Refer to Tabl Condition> STEP 1 2 3 4 5 Capacita Criteria a. At +105 measure The lead the Spee b. At step measure	e 1 m Capac e 1 Testin nce, DF, c, capa ed capac kage cur cified va 5.capaci ed capac	$\frac{\text{ng Tempo}}{20\pm}$ $\frac{20\pm}{(-40)(-2)}$ $\frac{20\pm}{20\pm}$ and imp citance slatance, di rent valu slue. tance shataitance, d	erature(°C 2 5) ± 3 2 2 2 edance sh hall be wi ssipation e at +105	$\begin{array}{c c} \hline \\ \hline $	e e to reac e to reac e to reac e to reac e to reac easured a 5% of th iall be wi not mor	h therma h therma h therma h therma at 120Hz eir origina ithin limi e than 1 r origina	$\frac{1}{1} = quilib$ $\frac{1}{2} = quilib$	rium rium rium rium

Version	01		Page	6	
---------	----	--	------	---	--

ELECTROLYTIC CAPACITOR SPECIFICATION VTD SERIES

4.6105°C ± 2 with DC bias voltage plus the rated ripple current for Table 1. (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) Then the product should be tested after 16 hours recovering time at atmospheric conditions. The result should meet the following table: 4.6life test Criteria> The characteristic shall meet the following requirements.Leakage currentValue in 4.3 shall be satisfied Capacitance Change Within $\pm 20\%$ of initial value. The characteristic shall meet the following table requirements. Condition>Condition> The capacitors are then stored with no voltage applied at a temperature of $105 \pm 2^{\circ}C$ for $1000+48/0$ hours. Following this period the capacitors shall be removed from the test chamber and be allowed to stabilized at room temperature of $4 - 8$ hours. Next the shall be connected to a series limiting resistor($1k \pm 100 \Omega$) with D.C. rated voltage applied for 30min. After which the capacitors shall be discharged, and then, tested the characteristics.4.7Shelf life test Criteria> The characteristic shall meet the following requirements.4.7AppearanceValue in 4.3 shall be satisfied Capacitance Change Within $\pm 20\%$ of initial value. tan δ Not more than 200% of the specified value. Appearance The characteristic shall meet the following requirements.	4.5 Interpretative characteristic case in the characteristic case is the case is th			c. At-40°C (-25°C), in table.	-			1	1	1	-
4.5 Condition> According to IEC60384-4No.4.13 methods, The capacitor is stored at a temperature of 105°C ± 2 with DC bias voltage plus the rated ripple current for Table 1. (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) Then the product should be tested after 16 hours recovering time at atmospheric conditions. The result should meet the following requirements. 4.6 life test Criteria> The characteristic shall meet the following requirements. Leakage current Value in 4.3 shall be satisfied Capacitance Change Within $\pm 20\%$ of initial value. Appearance There shall be no leakage of electrolyte. 4.7 Shelf life test Shelf Life comments and the satisfied test of a series limiting resistor(1k $\pm 100 \Omega$) with D.C. rated voltage applied for 30min. After which the capacitors shall be discharged, and then, tested the characteristics. 4.7 Leakage current Value in 4.3 shall be satisfied Capacitance Change Within $\pm 20\%$ of initial value. Appearance There shall be no leakage of electrolyte. 4.7 Shelf life test Coriteria> The capacitors are then stored with no voltage applied at a temperature of 105 ± 27 for 1000+48/0 hours. Following this period the capacitors shall be removed from the test chamber and be allowed to stabilized at room temperature for 4~8 hours. Next the shall be connected to a series limiting resistor(1k $\pm 100 \Omega$) with D.C. rated voltage applied for 30min. After which the capacitors shall be discharged, and then, tested the characteristics. 4.7 Leakage current Value in 4.3 shall be satisfied Capacitance Change Within $\pm 20\%$ of initial value. Appearance There shall be no leakage of electrolyte. Remark: If the capacitors are stored more than 1 year, the leakage current may increased the shall be context or set stored more than 1 year, the leakage current may increased the shall be note thange of the store thange of the store of the shall be noted to the store of the shall be noted to be a store of the shall be noted the store of the shall be noted the s	4.5 Conditions 4.5 cs 4.5 cs 4.5 cs 4.6 Load 4.6 Load 4.7 L		-								
4.6Load life testAccording to IEC60384-4No.4.13 methods, The capacitor is stored at a temperature of 105°C ± 2 with DC bias voltage plus the rated ripple current for Table 1. (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) Then th product should be tested after 16 hours recovering time at atmospheric conditions. Th result should meet the following table: 4.6Load life testLeakage current Capacitance Change Within $\pm 20\%$ of initial value. The characteristic shall meet the following requirements.4.6Load life testCriteria> The characteristic shall meet the following requirements. Leakage current Appearance4.7Shelf life test4.7Shelf life testCriteria> The characteristic shall meet the following requirements. The capacitors are then stored with no voltage applied at a temperature of $105\pm2\%$ for $1000+48/0$ hours. Following this period the capacitors shall be removed from th test chamber and be allowed to stabilized at room temperature of $4-8$ hours. Next the shall be connected to a series limiting resistor($1k\pm100\Omega$) with D.C. rated voltage applied for 30 min. After which the capacitors shall be discharged, and then, tested th characteristics shall meet the following requirements. The characteristic shall meet the following requirements. Leakage current Value in 4.3 shall be satisfied Capacitance Change Within $\pm 20\%$ of initial value. the characteristic shall meet the following requirements.4.7Load Life test4.7Shelf life test4.7Remark: If the capacitors are stored more than 200% of initial value. tan δ Not more than 200% of initial value. tan δ <	4.6Load life testAccording to IEC60384-4No.4.13 methods, The capacitor is stored at a temperature of 105°C ± 2 with DC bias voltage plus the rated ripple current for Table 1. (The sum of DC and ripple peak voltage shall not exceed the rated working voltage) Then the product should be tested after 16 hours recovering time at atmospheric conditions. The result should meet the following table: 4.6life test4.6life test4.6life test4.7Shelf life test4.7Shelf life test4.7Shelf life test4.7Shelf life test4.7Shelf life test4.7Remark: If the capacitors are stored the following requirements. test4.7Shelf life test4.7Remark: If the capacitors are then stored with no voltage applied at a temperature of 105±2°C for 1000+48/0 hours. Following this period the capacitors shall be removed from the test chamber and be allowed to stabilized at room temperature for 4-8 hours. Next the shall be connected to a series limiting resistor(1k±100 \Omega) with D.C. rated voltage applied for 30min. After which the capacitors shall be discharged, and then, tested the characteristic shall meet the following requirements.4.7Leakage current Leakage current testValue in 4.3 shall be satisfied Capacitance Change Within ±20% of initial value. ta 100 \Omega) with D.C. rated voltage applied f	4.5		Z-40 C/Z+20 C	0	0	4	4	-	4	
4.7Leakage currentValue in 4.3 shall be satisfied Capacitance ChangeWithin $\pm 20\%$ of initial value. Itan δ Not more than 200% of the specified value. Appearance4.7Shelf life test4.7Shelf life <td>4.7Leakage currentValue in 4.3 shall be satisfied Capacitance ChangeWithin $\pm 20\%$ of initial value. Itan δ4.7Shelf life test4.7Shelf<br <="" td=""/><td>4.6</td><td>life</td><td>According to IEC6038 105°C ± 2 with DC bi DC and ripple peak v product should be tester result should meet the Criteria></td><td>as voltage voltage sh ed after 16 following</td><td>plus the n all not es hours rec table:</td><td>rated ripp xceed the covering</td><td>le current e rated w time at at</td><td>t for Tab orking v</td><td>ole 1. (Th voltage)</td><td>ne sum o Then the</td></br></td>	4.7Leakage currentValue in 4.3 shall be satisfied Capacitance ChangeWithin $\pm 20\%$ of initial value. 	4.6	life	According to IEC6038 105°C ± 2 with DC bi DC and ripple peak v product should be tester result should meet the Criteria >	as voltage voltage sh ed after 16 following	plus the n all not es hours rec table:	rated ripp xceed the covering	le current e rated w time at at	t for Tab orking v	ole 1. (Th voltage)	ne sum o Then the
4.7 Shelf life test Shelf life test <	4.7 Shelf life test Shelf life test <		test				<u> </u>		ed		7
$tan \delta$ Not more than 200% of the specified value. AppearanceAppearanceThere shall be no leakage of electrolyte.<	4.7					Within ±	=20% of	initial va	lue.		
4.7 Shelf Life test $ \begin{array}{c} $	4.7 Shelf if $e^{-\frac{1}{2}}$ if $e^{-\frac{1}{2}}$ is $e^{-\frac{1}{2}}$ if $e^{-\frac{1}{2}}$					Not more	e than 20	0% of the	specifie	d value.	1
4.7Shelf life testCriteria> The characteristic shall meet the following requirements.4.7Shelf life test4.7Remark: If the capacitors are stored more than 1 year, the leakage current may increase	4.7Shelf life test Criteria> The characteristic shall meet the following requirements.4.7Shelf life test Appearance Criteria> The characteristic at room temperature of 105 \pm 2°C for 1000+48/0 hours. Following this period the capacitors shall be removed from the test chamber and be allowed to stabilized at room temperature for 4~8 hours. Next the shall be connected to a series limiting resistor(1k \pm 100 Ω) with D.C. rated voltage applied for 30min. After which the capacitors shall be discharged, and then, tested the characteristics.4.7Shelf life test Criteria> The characteristic shall meet the following requirements.4.7Remark: If the capacitors are stored more than 1 year, the leakage current may increase			Appearance		There sh	all be no	leakage c	of electro	lyte.	
4.7 life test $\begin{pmatrix} \\ The characteristic shall meet the following requirements. \\ \hline Leakage current \\ Capacitance Change \\ \hline Within \pm 20\% of initial value. \\ \hline tan \delta \\ \hline Appearance \\ \hline There shall be no leakage of electrolyte. \\ \hline Remark: If the capacitors are stored more than 1 year, the leakage current may increase$	4.7 life test $\begin{tabular}{ c c c c } < Criteria > \\ The characteristic shall meet the following requirements. \\ \hline Leakage current & Value in 4.3 shall be satisfied \\ \hline Capacitance Change & Within \pm 20\% of initial value.\hline tan \delta & Not more than 200\% of the specified value. \\ \hline Appearance & There shall be no leakage of electrolyte. \\ \hline Remark: If the capacitors are stored more than 1 year, the leakage current may increase$			for 1000+48/0 hours. test chamber and be all shall be connected to applied for 30min. Aft	Following owed to s a series 1	this peri tabilized a imiting r	od the ca at room te esistor(1k	pacitors s emperatures $\pm 100 \Omega$	shall be re for 4~8) with I	removed 8 hours. 1 D.C. rate	from the Next they d voltage
4.7 Iffe test The characteristic shall meet the following requirements. Leakage current Value in 4.3 shall be satisfied Capacitance Change Within $\pm 20\%$ of initial value. tan δ Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte. Remark: If the capacitors are stored more than 1 year, the leakage current may increase	4.7 Interview test The characteristic shall meet the following requirements. The characteristic shall meet the following requirements. Leakage current Value in 4.3 shall be satisfied Capacitance Change Within $\pm 20\%$ of initial value. tan δ Not more than 200% of the specified value. Appearance There shall be no leakage of electrolyte. Remark: If the capacitors are stored more than 1 year, the leakage current may increase		Shelf	-Critoria>							
testLeakage currentValue in 4.3 shall be satisfiedCapacitance ChangeWithin $\pm 20\%$ of initial value.tan δ Not more than 200% of the specified value.AppearanceThere shall be no leakage of electrolyte.Remark: If the capacitors are stored more than 1 year, the leakage current may increase	testLeakage currentValue in 4.3 shall be satisfiedCapacitance ChangeWithin $\pm 20\%$ of initial value. $\tan \delta$ Not more than 200% of the specified value.AppearanceThere shall be no leakage of electrolyte.Remark: If the capacitors are stored more than 1 year, the leakage current may increase				all meet th	e followi	ng require	ements.			
$\tan \delta$ Not more than 200% of the specified value.AppearanceThere shall be no leakage of electrolyte.Remark: If the capacitors are stored more than 1 year, the leakage current may increase	$\tan \delta$ Not more than 200% of the specified value.AppearanceThere shall be no leakage of electrolyte.Remark: If the capacitors are stored more than 1 year, the leakage current may increase	4.7	test						fied		
AppearanceThere shall be no leakage of electrolyte.Remark: If the capacitors are stored more than 1 year, the leakage current may increase	AppearanceThere shall be no leakage of electrolyte.Remark: If the capacitors are stored more than 1 year, the leakage current may increase	4.7			hange						_
Remark: If the capacitors are stored more than 1 year, the leakage current may increase	Remark: If the capacitors are stored more than 1 year, the leakage current may increase	4.7							-		4
		4.7				1 11 1	all ha ma	Jankana	of algoty	olyte.	
Please apply voltage through about 1 K12 resistor, 11 necessary.	Please apply voltage through about 1 K22 resistor, 11 necessary.	4.7		Appearance				<u> </u>			•
		4.7		Appearance Remark: If the capacito		red more	han 1 yea	ar, the lea	kage cur	rent may	increase
		4.7		Appearance Remark: If the capacito		red more	han 1 yea	ar, the lea	kage cur	rent may	increase
		4.7		Appearance Remark: If the capacito		red more	han 1 yea	ar, the lea	kage cur	rent may	increase

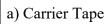

Version	01		Page	7
---------	----	--	------	---

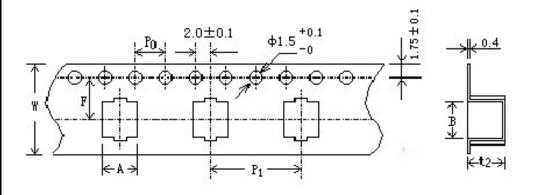
-	1		I			
		<condition></condition>				
			the capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor.			
		1	mitted to 1000 cycles, each consisting of charge of $30 \pm 5s$,			
		followed discharge of 5 m				
		The test temperature shal				
		C _R :Nominal Capacitance	ε (μ F)			
1.0	Surge	<criteria></criteria>				
4.8	test	Leakage current	Not more than the specified value.			
		Capacitance Change				
		tan δ	Not more than the specified value.			
		Appearance	There shall be no leakage of electrolyte.			
		Attention:				
			ltage at abnormal situation only. It is not applicable to such			
		over voltage as often appli	ed.			
		<condition></condition>				
			shall be applied for 2 hours in each 3 mutually			
		perpendicular directions.				
		Vibration frequency	range : 10 Hz ~ 55Hz			
		Peak to peak amplitu				
		Sweep rate	: $10Hz \sim 55Hz \sim 10Hz$ in about 1 minute			
		Mounting method:				
			r greater than 12.5mm or longer than 25mm must be fixed			
4.9	Vibration	in place with a bracket.				
4.9	test					
		<criteria></criteria>				
		After the test, the followin				
		Inner construction	No intermittent contacts, open or short circuiting.			
			No damage of tab terminals or electrodes.No mechanical damage in terminal. No leakage			
		Appearance	of electrolyte or swelling of the case.			
		Appearance	The markings shall be legible.			
		<condition></condition>	ed under the following conditions:			
		Soldering temperature	: 245±3°C			
		Dipping depth	: 24515 C			
		Dipping speed	: 25±2.5mm/s			
	Solderability	Dipping speed Dipping time	: 3±0.5s			
4.10	test	<criteria></criteria>	. 5±0.58			
	test		A minimum of 95% of the surface being			
		Coating quality	immersed			
L	ı					

Version	01		Page	8
---------	----	--	------	---

		<condition></condition>								
		-	r shall be immersed into solder b							
		1 seconds or $400 \pm 10^{\circ}$ C for 3^{+1}_{-0} seconds to 1.5~2.0mm from the body of capacitor.								
		Then the capacitor shall b	e left under the normal temperatur	e and normal humidity						
	Resistance to	for 1~2 hours before mea	surement.							
4.11 solder heat <criteria></criteria>										
test Leakage current Not more than the specified value. Capacitance Change Within ±10% of initial value.										
		Capacitance Change	Within $\pm 10\%$ of initial v	alue.						
		tan δ	Not more than the specifie	d value.						
		Appearance	Appearance There shall be no leakage of electrolyte.							
			There shan se he realinge							
		<condition></condition>								
		Humidity Test:	-4 No.4.12 methods, capacitor sha	11						
			hours in an atmosphere of 90~95							
		1	istic change shall meet the followi							
	Damp	<criteria></criteria>	istic change shan meet the followi	ng requirement.						
4.12	heat	Leakage current	Not more than the specified valu	e.						
	test	Capacitance Change	Within $\pm 20\%$ of initial value.							
		Dissipation Factor	Not more than 120% of the speci	fied value.						
		Appearance	There shall be no leakage of elec	trolyte.						
		D 11 11 4	4 0 1 0 70							
		Reasonable pulling strength :0.1~0.7N								
		Pulling speed: 300mm/min								
		push pull scale								
		<u></u>	seal tape							
4.13	Adhesion test		θ : approx. 10°							
			θ carr	ier tape						
		1 5	ed to the specified reflow solderin							
			w) it shall meet the condition state	d in the page 10,						
	Reflow	item 4.11.								
		<reflow condition<="" soldering="" td=""><td></td><td></td></reflow>								
			sured with thermal couple. which	shall be placed and fixed						
	soldering	on the top of capacitor body.	surea with thermal couple. which	shall be placed and fixed						
4.14	temperatur									
	e profile	Maximum Permissible Reflow Soldering Temperature Profile								
	_		all done according to following							
			soldering temperature reflow							
		soldering temperature profile								

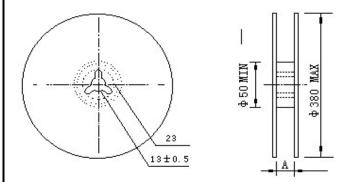
ELECTROLYTIC CAPACITOR SPECIFICATION VTD SERIES


Version	01		Page	10
---------	----	--	------	----


MAN YUE ELECTRONICS
COMPANY LIMITED

SAMXON

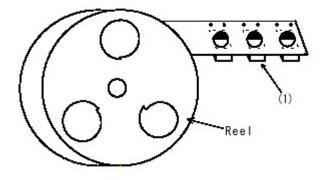
5. Taping


[Unit: mm]

φD×L	W±0.3	A±0.2	B±0.2	F ± 0.1	P ₁ ±0.1	t ₂ ±0.2
φ 8X10.2	24.0	8.7	8.7	11.5	16.0	11.0

b) Reel

φD	6.3	10	8
А	18	26	26


Version	01	Page	11
		0	

ELECTROLYTIC CAPACITOR SPECIFICATION VTD SERIES

SAMXON

6. Packing Style

- (1). Carrier tape shall be reeled inside. (seal tape shall be outside)
- (2). End of the tape shall be inside to the reel physically as shown in the below figure and leader part of seal tape shall not be attached.

Version	01	Page	12